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The flow past a cylindrical obstacle in an enclosed channel is examined when the 
entire configuration is rotating rapidly about an axis which is aligned with that of the 
obstaole. When viewed from a frame of reference which is rotating with the channel, 
Coriolis forces dominate and act to constrain the motion to be two-dimensional. The 
channel is considered to have depth varying linearly across its width, producing 
effects equivalent to the so-called @-plane approximation and permitting waves to 
travel away from the obstacle, both upstream and downstream. For the eastward 
flow considered in this paper, this leads to the formation of a lee-wavetrain 
downstream of the obstacle and, under some conditions, a region of retarded, or 
‘blocked’, flow upstream of the obstacle. The flow regime studied i s  essentially 
inviscid, although one form of frictional effect on the flow, introduced through the 
Ekman layers, is included. The properties of this system are examined numerically 
and compared with the theoretical predictions from other studies, whiah are 
applicable in asymptotic limits of the parameters. In particular, the relevance of 
‘ Long’s model ’ solutions is considered. 

1. Introduction 
The study of flows observed from a rotating frame of reference is clearly of 

relevance to Iarge-scale motion in the oceans and atmosphere, where Coriolis forces 
due to the earth’s rotation play a significant role in the dynamics. Although both the 
ocean and atmosphere are density-stratified, much can be gained from studying the 
motion of homogeneous fluid under similar circumstances. The next step in the study 
of large-scale geophysical flows is to include effects due to the latitudinal variation 
of apparent rotation rate, and this is usually modelled by the so-called /3-plane 
approximation which represents the variation linearly in mid-latitudes. The resulting 
spatial gradient of Coriolis force permits a form of wave motion which travels 
horizontally within the system’; these waves known as Rossby waves, are dispersive 
and have the property that the longitudinal component of the phase velocity is 
always directed westwards. Since the group velocity can take any direction, some 
care is required on ‘open’ boundaries of the flow domain. 

In this paper several important features of eastward @-plane flows are examined 
by considering the relatively simple model of a uniform flow past a cylindrical 
obstacle. The problem is studied over the complete parameter range in which inertial, 
P-plane and Ekman-suction effects are important, the last of which introduces a 
dissipative mechanism through friction in the Ekman layers on the top and bottom 
boundaries. The properties of rotating flows, under appropriate conditions, ensure 
that the fluid motion is dominantly two-dimensional and depth-independent, and 
this leads to significant simplifications of the analysis. The flow can then be described 
in terms of two dynamical parameters and the non-dimensional channel width, with 

12-2 



350 M .  A .  Page and E .  R.  Johnson 

the effects of the other geometrical parameters generally of less importance. The 
resulting equations are also accessible to analysis in various asymptotic limits of the 
dynamical parameters and the results of this analysis are compared with the 
numerical solutions, where appropriate. In particular, the magnitude and extent of 
the disturbance caused by the obstacle is well described by the asymptotic theory. 

Most of the properties of this configuration are independent of the particular shape 
of the obstacle introduced into the flow and so in this study a symmetric aerofoil, 
with a uniform cross-section over the depth of the fluid, has been chosen (for reasons 
which will be detailed later in this introduction). As is common in laboratory 
experiments, the /I-plane effects will be modelled by a linear variation in depth of the 
channel across its width. This can be shown to be equivalent, analytically, to a linear 
variation in rotation rate across the channel (Greenspan 1970) and therefore flows in 
the study are equivalent to zonal flows in the oceans and atmosphere. The channel 
is also considered to have finite width and for computational reasons, outlined later, 
the channel in this study will be slightly wider near the obstacle than at  the inflow 
and outflow regions. In the laboratory experiments of Boyer & Davies (1982) the 
channel has uniform width and the obstacle is a circular cylinder but similar effects 
can be expected (and are observed) in the configuration used here. The extensions to 
an infinite-width channel are feasible in principle, but a continuous set of allowable 
wave-modes must be accounted for. 

As mentioned above, the /I-effect allows Rossby waves to propagate within the 
system and these are apparent in the evolution of the flow past an obstacle. The 
oncoming stream tends to advect some of these downstream but there will always be 
some waves with a sufficiently large group velocity to propagate upstream of the 
obstacle. Thus, when the flow becomes steady (as it usually will after a sufficient 
time) the only waves remaining are the stationary waves with their phase speed 
equal to the local flow speed. In  eastward flows these can form a ‘lee-wavetrain’ 
behind the obstacle, like that shown for internal waves in a stratified flow by Miles 
& Huppert (1968), but they can also significantly modify the oncoming uniform 
stream, in an extreme case forming a ‘blocked’ region upstream such as that 
illustrated in Foster (1985). The latter effect is similar to that described for a 
stratified fluid by Baines (1977) and, in the absence of dissipation, it can have a 
profound influence on the upstream boundary conditions and can limit the 
applicability of such ‘Long’s model’ solutions as those in Miles & Huppert (1968). 
Although the effects of Ekman suction can be expected to modify these general 
properties, it will be seen from both the analytical and the numerical results 
presented in this paper that the features remain broadly appropriate in the presence 
of this form of dissipation. There are, however, some significant differences between 
the analysis and the numerical solutions, such as the ‘resonant’ effect in Long’s 
model for a finite-width channel and (more generally) the formation of closed- 
streamline regions, and these are explained here in terms of the effects of stationary 
upstream waves. In contrast, neither upstream effects nor lee-wave wakes are 
present in westward flows past an obstacle (Johnson & Page 1990). 

Another factor that should be taken into account, especially when comparing the 
analytical and numerical results with those obtained experimentally, is that the 
viscous boundary layers which are neglected in the analysis of this paper can 
separate from the obstacles and significantly distort the flow. This flow separation is 
similar to that seen in non-rotating flows a t  high Reynolds number, and it has been 
studied extensively in uniformly rotating, or f-plane, flows where /I effects are 
neglected. In that situation it is found that once inertial effects begin to dominate 



Flow past cylindrical obstacles on a beta-plane 351 

Ekman-dissipation, the Ei layers on the obstacle can separate and enclose a finite 
region of stagnant fluid (Page 1987). With a @plane approximation included the 
same situation arises, but the critical ratio of inertia to dissipation depends on the 
relative magnitude of the p effect, rather as it depended on the height of the 
topography in Page (1982). The effects of Ei-layer separation are not included 
explicitly in this study, but the criterion for separation is examined to determine 
whether they may be important. For bodies with a bluff trailing-edge, such as the 
circular cylinder, it is clear from previous studies (including Matsuura & Yamagata 
1986) that separation occurs over most of the parameter regime considered in this 
paper, distorting the effective shape of the obstacle. To model the effect of this, the 
obstacle used in this study was chosen to have a cross-section in the form of a 
Joukowski aerofoil, of a similar shape to the separated flow for a large class of bluff 
obstacles (Page 1988). 

Section 2 derives the governing equations showing that in the limit of vanishingly 
small viscosity the flow can be characterized by two parameters a and A, measuring 
the strength relative to Ekman suction of, respectively, the ,8 effect and advection. 
Sections 3-8 discuss briefly various asymptotic limits of these equations. Section 3 
presents the limit of slow flow h 4 1 in which the governing equation becomes linear. 
It is shown that if also a % 1 then any obstacle affects the flow far upstream. In $ 4  
the same limit is considered with x = ah fixed, which was introduced by Foster 
(1985) to discuss the first effects of nonlinearity on flow dominated by the linear 
balance between the /3 effect and Ekman suction. Section 5 then considers the general 
properties of flows with a % 1, for which the p effect is dominant, while $6  discusses 
the inviscid limit h + 00, a + 00 with K = (a/h)i fixed. In this regime the potential 
vorticity is conserved to leading order, giving ‘Long’s model ’ solutions equivalent to 
those derived for a stratified fluid by Miles & Huppert (1968). The limit h % 1 and a 
is arbitrary is considered in $7 ,  in which case Ekman suction only affects the flow 
over distances of O(A) from the obstacle. Finally, the case of weak p effect, a @ 1, is 
examined in $8  for arbitrary h by expanding about the irrotational solution which 
is appropriate when a = 0. 

In $9  the numerical method used to solve the equations for arbitrary a and h is 
presented and in $10 the results of these numerical integrations are discussed in 
relation to the various asymptotic solutions described in $$ 3-8. Section 11 discusses 
the conditions under which Ei layers on the obstacle can separate and the types of 
flow pattern expected in that case. Finally, the overall conclusions are briefly 
summarized by $ 12. 

2. Governing equations 
This paper examines the motion of a homogeneous fluid of density p* and constant 

kinematic viscosity v* which is contained in an infinitely long channel of finite depth 
d*,  rotating a t  constant angular velocity a*. Relative to a frame of reference 
rotating with the channel, a uniform flow of speed U* is introduced along the channel 
within which a cylindrical obstacle, of scale width I * ,  is placed with its axis aligned 
vertically (i.e. parallel to the rotation axis). The base of the container is inclined by 
a small angle p from the horizontal, so that it slopes in the direction perpendicular 
to the introduced flow. This configuration is essentially the same as that considered 
by Foster (1985), Page & Johnson (1986), Matsuura & Yamagata (1986) and used in 
the experiments performed by Boyer & Davies (1982). It also parallels similar work 
on flows in an enclosed container by Pedlosky & Greenspan (1967), Beardsley (1969, 
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1973) and more recently by Hide & Hocking (1979). In fact, the derivation of the 
equations in this section follows the treatment in Hide & Hocking (1979). The 
particular case p = 0, often referred to as the f-plane flow, has also been examined 
extensively, most recently by Page (1987). 

Based on the dimensional quantities described above, four non-dimensional 
parameters can be introduced 

referred to here as the Rossby number, Ekman number, bottom slope and scaled 
depth, respectively. These form the basic set of governing parameters for the flow to 
be described in this paper, as can be demonstrated by non-dimensionalizing velocities 
in the flow with respect to U*, lengths with respect to I* and time with respect to 
(a*)-'. The full governing equations for a fluid in this configuration are then 

(2.2) 

v * u  = 0, (2.3) 

au 
at 
- + R o ( u . V ) U + ~ ( ~ X U )  = -VP+EV2u, 

where k is the unit vector in the z-direction and P is the reduced pressure (with the 
centrifugal contribution removed and scaled by p*U*Q*l*). For convenience, the 
horizontal axes are chosen so that x is aligned with the uniform flow at infinity and 
the bottom slope is in the y-direction. 

The particular case of interest in this paper is where the Ekman number E tends 
to zero and both the Rossby number Ro and the bottom slope tan /3 are O(Ei), with 
d being an O(1) quantity with respect to Ei. Under these conditions the steady flow 
is governed predominantly by the geostrophic balance 

2(k x U) x -VP,  (2.4) 

which, in turn, implies that the basic flow is both two-dimensional and depth- 
independent. Details are standard, and can be found, for example, in Greenspan 
(1968) or Moore (1978). Further, if it is assumed that the flow varies on a relatively 
slow timescale of O(E4) (which is acceptable once the original spin-up process has 
been completed) it can be shown that the vertical component of the vorticity 

satisfies 

where awlaz in this equation is of order Ei and is induced solely by the Ekman layers 
near both z = y tanp  and z = d .  To O(E), these introduce vertical velocities of 

and 

w = -@&< a t  z = d ,  

w-vtan/3=$dEi< a tz=ytan/3 ,  

so that aw/az is given to within a similar error by 
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in the main body of the flow. Neglecting other terms of O(E) from (2.6), including the 
factor Roc which introduces higher-order asymmetries into the flow, leads to the 
equation 

in terms of the two scaled parameters 

Ro A = -  tan /? a=- 
dEi ’ 2Ek ’ 

(2.10) 

(2.11) 

and the Ekman spin-up timescale T = 3-t. The scaled vorticity equation (2.10) 
forms the basis of the present study, which aims to investigate the properties of the 
flow for any value of a and A (given that the effect of T is limited to a trivial scaling 
oft). In particular, note that the original four-parameter system has, in this context, 
been reduced to effectively a two-parameter system. As in Foster (1985), attention 
is restricted to the case of eastward flow ( A  > 0) for which the bottom slopes upwards 
in the y-direction (a > 0). This’is geometrically similar to the westward-flow ( A  < 0) 
case when a < 0 but is fundamentally different from the other pair of possibilities 
(see, for example, Johnson & Page 1990). 

As in previous studies, it  is convenient for both the computation and presentation 
of the results to introduce a stream function $ defined by 

(2.12) 

in terms of which can be written as 

c = V8$, (2.13) 

where V2 is the two-dimensional Laplacian. From (2.4), it follows that $ is equal to 
to leading order and so the streamlines represent lines of constant reduced 

pressure P. Together, the coupled equations (2.10) and (2.13) form the governing 
equations of the flow. 

For the reasons outlined in the introduction, the obstacle selected for consideration 
in this paper is chosen to be cylindrical with a cross-section in the form of a 
symmetric Joukowski aerofoil (see figure 1). The half-width, A,, say, of this aerofoil 
is chosen to be approximately unity, in accordance with the non-dimensionalization 
above, and the half-length of the obstacle defined to be equal to L, which is generally 
an order one quantity in this study (the precise shape in terms of L is determined by 
the transformation given below). Note that the special case L = 1 corresponds to a 
circular obstacle while L > 1 corresponds to an aerofoil. For computational 
convenience, the channel is also considered to have a large finite width, equal to 2W 
far upstream and downstream, but slightly wider near the obstacle (see below). The 
Cartesian axes used to describe the flow are selected so that the aerofoil lies 
symmetrically about the line y=O,  between x = - L  and x =  L.  It is then 
straightforward to demonstrate that the resulting flow is symmetric about y = 0 to 
leading order, and so from this point only the flow for y 2 0 will be considered. (Note 
that the asymmetries observed in experiments of Boyer & Davies (1982) can be 
attributed both to finite-Rossby-number effects, which are not present in the limit 
Ro-t 0 considered here, and to possible non-uniformities in the oncoming flow.) 
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FIWJRE 1.  Schematic diagram illustrating the geometry and parameters used in this study (not 
drawn to scale). In this, and all subsequent figures, the flow is from left to right. 

The boundary conditions applied on the flow field are that @ = 0 on both the line 
of symmetry y = 0 and the aerofoil surface, and that @ = - W on the channel wall 
at  y x W .  This leads to a flow with an average streamwise velocity equal to one far 
upstream. The other boundary conditions imposed upstream on (2.10) and both 
upstream and downstream on (2.13) are discussed in $9 along with the numerical 
method. The initial condition on the vorticity, required by (2.10), is chosen to be 
identically zero, corresponding to flow started impulsively from rest. 

For ease of computation, the flow region surrounding the Joukowski aerofoil can 
be transformed conformally into the upper half-plane by a mapping z’ = f(z), defined 
through 

(2.14) 

where u is a complex-valued variable, z = x+iy is the complex number rep- 
resentation of a point in the original region, z‘ = x’ + iy’ is the corresponding point in 
the transformed domain and the branch cut for the square root is a straight line 
joining the branch points z = L and z = 2/L-L (see, for example, Henrici 1974, 
p. 369). This mapping is defined so that the aerofoil is transformed into the line 
segment ls’l 6 (L+ I), y’ = 0 and the line of symmetry is mapped into Id1 > (L+ l), 
y‘ = 0. As a result, the boundary condition @ = 0 is applied on the complete line 
y’ = 0 in the transformed region and, since z’ - z far from the obstacle, the uniform- 
flow condition in the new coordinates is @ - -y‘. For convenience, the boundary 
condition on the channel wall was applied on y’ = W so that, as mentioned above, the 
width of the flow domain is slightly larger than W near the obstacle. 

As is common in experimental studies of geophysical flows, such as Boyer & Davies 
(1982), the sloping channel bottom is introduced because it has an effect which is 
similar to the so-called P-plane approximation. If instead the configuration were 
rotating at a rate g(S+P*y*), in dimensional terms, then the resulting vorticity 
equation would be identical, to leading-order, to (2.10) but with tan /3 replaced by 
P*d*/f* and B* replaced by $f* in (2.1). 
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3. The case h = 0 with a arbitrary 
In the limit as h tends to zero, (2.10) reduces to the linear equation 

but, despite the relative simplicity of this, no analytical solutions itre readily 
available except on anf-plane for which a = 0 (and where 5 decays exponentially in 
t on a timescale of order 7) .  Once the flow becomes steady, however, $ satisfies the 
second-order elliptic equation 

(3.2) V 2 $ + a -  a9 = 0, 
ax 

and some theoretical progress is possible in particular limits of a. This equation is 
identical to that derived by Foster (1985) for flow’past a circular cylinder and an 
exact solution for a of O(1) is presented in Johnson & Page (1990), using a similar 
expansion to that used for the contained flow in Hide & Hocking (1979). 

The general properties of the flow in this parameter regime are similar to those 
described in each of the above papers. Of particular interest is the limit of flow as 
a + co, which Foster (1985) showed to have of a uniform velocity (u, v) = ( 1 , O )  in most 
of the channel, with streamlines following the lines of constant depth. The major 
exceptional region to this was upstream of the obstacle for values of y less than h,,, 
where the flow remained stagnant (as illustrated in figure 2 of his paper), although 
there were also two different types of thin shear layers, on the boundary of the 
stagnant region and on the downstream side of the obstacle. For a % 1 these had 
thickness O(l/ai)  and O ( l / a )  and contained velocities of O(a4) and O(a), respectively. 
Neither was due directly to viscous diffusion (since that effect was neglected from 
(2.10) under the limit E-tO) but they were indirectly related to the effects of 
viscosity in the Ekman layers. Both types of layers, and a similar type of ‘ blocking ’ 
effect, were also present in the contained flow studied by Hide & Hocking (1979). As 
in that paper, it is clear that modifications to the structure outlined above are 
necessary once a = O(E-f), for E non-zero, in which case the layer of thickness O(l/a) 
is of the same thickness as the ld layer and (2.10) is inaccurate close to the obstacle. 
Since the limit E + 0, with a and h finite, is considered here, such modifications are 
not pursued in this paper. 

The layers which appear upstream of the obstacle are governed, to leading order 
for a B 1, by the parabolic equation 

and the appropriate solution to this, presented in Foster (1985), demonstrates that 
the layers are of thickness O(lxl/a)i far upstream from the obstacle. Once 1x1 is O(a), 
these layers near y = kh,,, merge together across the stagnant region to form a 
single region of width 0(1), within which the velocities are also O(1). A solution for 
the flow in this region, obtained using Laplace transforms, is presented in equation 
(3.8) of Foster (1985), taking advantage of the fact that the obstacle in the scaled 
coordinates is effectively a transverse flat plate. A similar technique can be used for 
the flow considered in this paper, although the effect of the confining walls at  y x f W 
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FIGURE 2. Schematic diagram illustrating the important flow regions for A = 0 and a + 1 

suggests that the general solution has the asymptotic form 

n2n2x nny 
$ = -y+ n=1 Anexp(-)sinW aW2 

m 

(3.4) 

far upstream. This solution demonstrates that as 1x1 is increased the velocities tend 
exponentially towards the uniform flow (u, v) = (1,0), in constrast to Foster’s 
solution for the semi-infinite flow which shows an algebraic decay towards the 
upstream boundary condition. In both cases, however, the stagnant, or ‘blocked ’, 
flow is contained within a distance of O(a) upstream from the obstacle through 
frictional effects. 

One of the important properties of these layers near y = 5 h,,, is that they permit 
an O(1) quantity of fluid to be transported around the stagnant region. This fluid is 
then carried into the second type of shear layer, which lies against the downstream 
side of the obstacle. Variously referred to as a ‘western boundary current’ or a 
Stommel layer (Pedlosky 1979), this region is confined to within a distance of O(l/a)  
of the downstream side of the obstacle when a B 1 and its main role is to expel the 
aforementioned fluid into the outer uniform flow. Using a similar analysis to Foster 
(1985), an exact solution for the velocity in this layer can be calculated for an aerofoil 
obstacle and this is presented in $ 4  (where the h = O(l /a)  solutions are also 
considered). 

The form of the flow for a B 1 is shown schematically in figure 2, including the so- 
called ‘shoulder’ region (of size a-f x a’) described by both Foster (1985) and Hide 
& Hocking (1979). To illustrate the appearance of these features for large but finite 
values of a, (3.2) was solved numerically using the technique described in $9  and the 
streamlines for a = 32 are illustrated in figure 3(a). Of particular note is the 
similarity in the features to those identified in figure 2. The vorticity 6 corresponding 
to the streamlines in figure 3(a)  is plotted in figure 3 ( b )  and this identifies more 
clearly the two types of thin shear layers described above, with the upstream shear 
layer extending over a distance of O(a) from the obstacle. This feature represents the 
archetype of upstream influence, where the effect of the obstacle is ‘felt ’ by the fluid 
before it reaches there, a phenomenon which forms an important part of not only this 
study but also related work in both stratified fluids (Baines 1977) and axial flow in 
a rotating fluid (Stewartson 1958). 

The mechanism through which the effect of the obstacle can extend far upstream 
is apparent from the unsteady form of (3.1), since a 9 1, the Rossby-wave solutions 
Of 

a6 a$ 
at ax 7--+a- = 0 (3.5) 

are able to propagate throughout the flow domain. Given any non-equilibrium initial 
flow, waves are subsequently generated at the obstacle and these propagate away in 
all directions, eventually leaving behind a steady flow like that illustrated in figure 
3 for a = 32. To illustrate why the final steady solution has this particular form an 
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FIQURE 3. Numerical solutions for the flow when h = 0 and a = 32, showing (a) the stream function e (with contour interval A@ = 0.1) and (b) the corresponding vorticity 6 (with contour interval 
A[= 10). 

equivalent argument to that in Lighthill (1967) can be invoked, using the well-known 
result that the dispersion relation for Rossby waves with $ cc exp [i(kx + ly - wt)] is 

-ak 
k2+12’ 

07 = ~ 

Thus the phase of these waves always moves towards the negative x-direction 
while the group velocity 

a 
(k2-12, 2kl) 

cg = r(k2 + 12)2 (3.7) 

can be directed in either the upstream or the downstream directions, depending on 
the wavenumber (k, 1 )  of the disturbance component. As a result, once waves have 
propagated away from the obstacle, the only remaining components in the steady 
flow are those with k = 0 and, since the x-component of cg is always negative in this 
case, these appear only on the upstream side of the obstacle. The amplitudes of the 
disturbance components for each wavenumber l is then such that together they 
exactly balance the uniform oncoming flow for y < h,,, forming into the ‘blocked’ 
region described above. 

For O( 1) values of a the flow has broadly the same properties as would be expected 
from the structure outlined above for a & 1.  In particular, the numerical results 
illustrated in figure 4 for various values of a show a region of retarded flow ahead of 
the obstacle, although it is not completely stagnant. This is bounded by a ‘tongue’ 
of vorticity which extends upstream from the obstacle peak, over a distance which 
is broadly proportional to a. Also apparent in figure 4 is the high-vorticity region 
against the downstream side of the obstacle, which becomes thinner and stronger as 
a is increased. Since the contour interval chosen for each of the vorticity plots in 
figure 4 is proportional to the value of a used, it is clear that the vorticity induced 
in the upstream region is roughly proportional to a and that the vorticity in the 
‘western boundary current ’ increases more rapidly than a. This is consistent with the 
asymptotic theories for these layers when a S= 1, described above. The major 
dynamical difference between the flows for a S= 1 and for a = O(1) arises through the 
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FIQURE 4. Numerical solutions showing the vorticity [ (with contour interval A[ = 0 . 1 ~ ~ )  for 
h = 0 and a = 1 ,  2, 4 and 8, plotted over the range - 10 < z < 10. These values lie along cross- 
section A on figure 9. 

term -5 in (3.1) which has a frictional effect on the flow (see also Page 1987), so that 
thin shear layers are smeared out and Rossby waves are dissipated more strongly 
where this term is relatively important. 

Most of the structure described above remains valid for small non-zero values of 
A, provided that h 4 1 when a = O( 1) and h 4 l/a when a $- 1. Further details of the 
case where h = O ( l / a )  are presented in both Johnson & Page (1990) and the 
following section of this paper. 

4. The case h = O ( l / a )  when a %- 1 
As h is increased from zero, the first nonlinear modifications to the a 9 1 flow 

described in $ 3  occur once h reaches O ( l / a ) ,  at which stage the flow in both the 
‘western boundary current ’ and ‘shoulder ’ regions is modified from the h = 0 
structure. Proposals for the modification to the equations in these regions for a flow 
past a circular cylinder were presented in $4 and $5 of Foster (1985), however there 
were some difficulties in the details of these proposals which are clarified in the 
companion to this paper, Johnson & Page (1990). It is therefore worth indicating 
here how they relate to the flow past an aerofoil. 

First, the general solution of (2.10) for h = 0, in terms of the transformed 
coordinates (x‘, y’) described in $2, satisfies 

where Q = Jdf/dzl is the stretching factor introduced by the transformation. To 
examine the layer of thickness O( l / a )  against the downstream side of the aerofoil the 
scaled coordinate y’ = ay’ can be introduced and for a B 1 it follows that 
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in this region, where Q and ay’/ax are now evaluated on y’ = 0. Both Q and ay’jax 
can be evaluated in terms of the inverse z = g(z’) of the transformation z’ =f(z), for 
- (L + 1) < x’ < (L + l),  and the boundary condition $ - - y at the outer edge of the 
layer can be written as $ + - h(x’) as y” -+ co, where h(x’) is the aerofoil height at x’ 
(given by the imaginary part of g(x’)). Equation (4.2) can then be integrated exactly 
to give the solution 

which is similar to (4.6) in Foster (1985) (for direct comparison with that result it can 
be shown that h = sin6 and dh/dx’ = -;cot 6, in terms of his variable 6, for L = 1) .  
For the aerofoil flow, as for the circular cylinder, dhldx‘ is zero at the peak of the 
obstacle and less than zero on the downstream side and therefore the ‘western 
boundary current ’ layer can only exist for xk < x’ < (L + l) ,  where x; is the point 
where h is maximum. Unlike the circular cylinder case, dhldx’ approaches zero at the 
trailing edge of the aerofoil (rather than becoming infinite), but this presents no real 
difficulties since the layer contains no fluid at that point. In figure 5, the scaled 
tangential velocity a‘ = -&a$r/ay’ on y’ = 0 is plotted, based on the solution (4.3), 
and it is significant to note that on the h = 0 curve @’ vanishes at both the peak and 
trailing edge of the aerofoil, with a’ cc (L + 1 -x ’ )~  in the latter case (as can be verified 
from (4.3)). 

As h is increased from zero to O(l /a ) ,  for a 9 1, the nonlinear terms in the western 
boundary current become important and (4.2) no longer accurately describes the 
flow. The equation governing a’ then becomes 

in terms of x = Aa, equivalent to (4.1) in Foster (1985). Replacing y’ by a stream 
function coordinate $, this equation can be written as 

a%‘ dh 
ax dx 

XQa’,+@’+--;Q(II/+h) = 0, (4.5) 

and the solutions of this have similar properties to those described by Foster (1985) 
for the circular cylinder, except that there is no critical value of h beyond which a 
similarity solution exists at the trailing edge (because Qh dhldx’ decreases to zero 
quadratically, rather than linearly, near that point). Since (4.5) is nonlinear and Q 
and h are all complicated functions of x‘, no exact solutions of (4.5) are available and 
therefore the equation was integrated numerically over the range x; < x‘ < (L+ l),  
starting with the initial condition = 0 at x’ = x;. These numerical solutions, 
obtained using centred-difference approximations, are plotted on figure 5 for the 
single streamline $ = 0. For small values of h the velocity falls to zero quadratically 
at the trailing edge, as it does for h = 0. However, for values of h larger than about 
1.74 (when L = 2), and in particular h = 2 , 4  and 8 shown in figure 5, the velocity on 
the $ = 0 streamline is not zero at  the trailing edge and instead, through (4.5), it 
satisfies the condition hQ aa’/ax’ = - 1 at that point (which is, incidentally, the usual 
separation condition for & layers). The appearance of non-zero velocities at the 
trailing edge is similar to that noted by Foster for his h > a solutions, but in this case 
it is not accompanied by the development of a singularity at the end of the layer since 
there is no difficulty in having non-zero tangential velocities at the trailing edge of 
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FIGURE 5. The scaled tangential velocity u“ against the surface of the obstacle for the case when 
x = Aa is 0(1) and a 9 1. The velocity is plotted for several values of A and the distance s is 
measured around the obstacle from the front stagnation point, with 8 = so at the obstacle peak. 

the aerofoil. In contrast, at  the rear stagnation point of the cylinder the same 
property would violate the symmetry condition v = 0 on y = 0 and lead to the 
development of a complicated asymptotic structure (Johnson & Page 1990; Page & 
Johnson 1990). In confirmation of this, numerical solutions to the full equations 
(examined in $10) show that there is change in the form of the a = 16 solutions near 
the trailing edge at  a value of x between 1 and 2 when L = 2, with a jet-like feature 
appearing in the wake near y = 0. This appears to correspond to the ‘southern 
boundary layer’ described in Johnson & Page (1990) and the entrained fluid is 
eventually carried back into the western boundary current via a ‘return shear layer ’ 
(see also Page & Johnson 1990). No inertial turning region is needed in this case. 

The form of the solutions near the outer edge of the layer, where @ x - h and u“ 
is small, is also of interest. Approximating (4.4) in this region, II. satisfies 

and this has solutions of the form 9 = - h+A exp (cy’), with c given by 

1 & (1 - 4>Q2(dh/dx’)2)’ 
2xQ2 (dh/dz’) ’ 

c =  (4.7) 

Since dh/dx‘ is negative, it is apparent that both of these values of c are negative and 
furthermore that, for x sufficiently large, they are complex-valued (with a negative 
real part) at  some points along the aerofoil. In Foster’s case this occurs first at  the 
rear stagnation point, when > = a, but for the aerofoil the occurrence of complex 
values of c, and hence an oscillatory flow at the outer edge of the layer, appears first 
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in the vicinity of the minimum of dhldx’. As a result t,he ‘spiralling’ solutions, 
encountered by Foster near the rear stagnation point, do not present difficulties near 
the trailing edge of an aerofoil obstacle. More generally, it can be shown that the 
spiralling solutions will be present at  the rear stagnation point of bodies with a bluff 
trailing edge when x > a, but that they are never present at the end of bodies with 
a sharp ‘ cusped ’ trailing edge, on which Qdhldx’ -+ 0 as x’ + (L + 1). A body with a 
finite-angled wedge at  the rear provides a transition between these two cases, with 
a critical value of x = 1/(4 sin2 r) for the existence of spiralling solutions, where y is 
the half-angle of the wedge. Note that for large values of x the imaginary part of c 
is proportional to l/xi, and hence the wavelength of the oscillations in this layer is 
O(A/a)i  in the unscaled coordinates, while the real part of c is proportional to l / X ,  
which corresponds to a decay scale of O(A). These two features are consistent with 
those discussed, more generally, in the following two sections. 

5. The case a: 9 1 with h arbitrary 
In each of the previous sections it was apparent that the flow upstream of the 

obstacle is modified with the formation of an upstream blocked region extending over 
distances of order a when a is large. Scaling (2.10) into this region by introducing a 
new variable X = x/a:, it follows that 

so that while h of 0(1 )  an equivalent leading-order equation to (3.3) is recovered. 
Solutions to this equation therefore have the same series form (3.4), except that for 
large n the nonlinear term in (5.1) cannot be neglected in comparison to the other 
terms. As a guide to the modifications which arise in this case, (5.1) has exact 
solutions of the form 

(5.2) 
@ = -y+F,sinW, STY 

provided (5.3) 

This same modal solution also satisfies the linearized equation, which is appropriate 
when u z 1 and w x 0, and so a general series solution of a similar form to (3.4) can 
be found far upstream, but with the exponential variation in z replaced b? (5.3) and 
the summation truncated beyond the largest integer N less than (a:/A)rW/n. This 
solution remains valid far upstream for larger values of A, up to and including O(a),  
although the sum contains at most an 0(1), rather than an O(ai), set of terms in that 
case. For smaller values of A, in particular when h is O(l /a )  as in the previous section, 
the same argument demonstrates that only the highest wavenumber components are 
absent from the upstream flow, and so the qualitative features of the flow are 
unlikely to be altered significantly from those described in $3 for A = 0. For 
increasing A the sharpness of the boundary between the stagnant and uniform flow 
regions in figure 2 is lost, both through the absence of the higher wavenumbers and 
the nonlinearity of the shear layer between those regions. 

The solution (5.3) also demonstrates that wave components with n > N decay 
downstream and can therefore only appear behind the obstacle in the steady flow. 
For n z N these modes have a wavelength in y of order @/a): so that for A of O( l/a) 
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they can be identified with the waves in the ‘Rossby layer’ discussed in the previous 
section. Furthermore, (5 .3)  demonstrates that they decay over a lengthscale of O(A), 
and both of these properties are consistent with the conclusions of $4, based on the 
form of the flow near the outer edge of the western boundary current for A = O ( l / a ) .  
As a result, the streamlines can be expected to show a relatively large number of 
these oscillations, of short wavelength, extending downstream of the obstacle for h 
of 0(1 )  and a B 1. This represents a considerable modification to the structure in $4 
where the jet emanating from the upstream shear layer is confined to within a 
‘western boundary current ’ close to the obstacle. 

Whether oscillations of a certain wavelength appear upstream or downstream in 
the steady flow can also be determined using a group velocity argument similar to 
that outlined for h = 0 in $3. For non-zero h an additional term appears in the 
dispersion relation (3.6) for Rossby waves far upstream, so that 

ak 
WT = A k - -  

k2 -k l2 

when the velocity (u, w) is close to ( 1 , O ) .  The z-component of cg then becomes 

h a(k2-Z2) 
cgz = -+ 

7 7 ( k 2 + 1 2 ) 2  

(5.4) 

and the steady k = 0 components will only travel upstream while l2 < a/h ,  equivalent 
to the condition n < N above. In  contrast, the higher-wavenumber components have 
cgz > 0 and they therefore appear downstream in the steady flow. In addition to 
these k = 0 components, (5.4) also suggests that steady wave modes with k 2 + P  = 
a/h  can exist (as in Lighthill 1967) and these appear downstream of the obstacle 
(since cgz > 0) and produce the ‘lee-wave train’ examined in $6. These waves did not 
appear from the analysis based on (5.1) and (5.3) since their lengthscale is generally 
shorter than O(a).  

6.  The case h = O(a)  when a B 1 
The next regime in which some theoretical progress can be made is for a steady 

flow with a B 1 and h = O(a), under which the Ekman suction term can be neglected 
from the vorticity equation in most of the flow and (2.10) approximated by 

This equation is well known (see, for example, Pedlosky 1979), and it follows that the 
quantity .F = (h[+ay), often known as the ‘potential vorticity ’, is conserved along 
streamlines. Since ,F is a function of $ only then its value is fixed by the potential 
vorticity at  any point on each streamline (for example far upstream), and 6 can be 
determined everywhere in the flow field by the relation 

h[+ay = F((9). (6.2) 

Using (2.13), this can be written as an elliptic equation for $, which is generally 
nonlinear but can, in principle, be solved given appropriate boundary conditions on 
$. Despite this apparent reduction in the complexity of the problem, solving for the 
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resulting flow does present some practical difficulties ; in particular, the appropriate 
function 9 ($) and the appropriate boundary conditions on $ are not always readily 
identifiable. 

As an example of this, consider the particular case when 9 is linear; exact 
solutions of (6.2) are then relatively easy to calculate and they have been given for 
several different cases of flow past obstacles by Long (1955), Miles (1968), Huppert 
& Miles (1969) and Miles & Huppert (1968,1969). (Later studies by McCartney (1975) 
and Johnson (1977, 1978) extended this work to flow above topography in a similar 
configuration.) The key assumption behind the choice of a linear 9 is that the flow 
is undisturbed and uniform far upstream, so that $ + - y and y-+ 0 as x -+ - 00, and, 
through (6.2), $ satisfies the linear equation 

along all streamlines originating from upstream. Homogeneous solutions of (6.3) are 
wavelike in character and the stydies mentioned above chose, based on energy 
arguments, solutions for which no standing waves were present in front of the 
obstacle for x2 + y2  % 1 (this is possible through an appropriate choice of boundary 
conditions on $ for x < 0 far from the obstacle, using an argument like that in $ 7  of 
Lighthill 1966). The resulting flows were plotted (for example, in the Appendix of 
Miles & Huppert, 1968) for several values of a parameter K ,  equal to @/A);  in this 
context, and it was found that solutions with u positive everywhere could only be 
found for certain values of K (the vanishing of u was identified with a loss of static 
stability in their context). For a finite-depth fluid this requires that K be away from 
certain ‘resonant’ values (Long 1955), while for semi-infinite fluid K should be less 
than a single critical value (close to 1.27 for the circular obstacle). Despite this, 
consistent solutions could be calculated for other values of K although in some cases 
the flow developed closed-streamline regions, with not all streamlines originating 
from upstream (thereby invalidating (6.3) in those regions). As a result, the correct 
steady flow corresponding to an initially-uniform upstream profile can probably only 
be calculated either by solving an unsteady initial-value problem or by introducing 
viscous effects. Pursuing the former, it becomes apparent that, through analogous 
arguments to those in Stewartson (1958), the flow evolves towards an equilibrium 
state through the generation of Rossby waves which can propagate both upstream 
and downstream of the obstacle. In  particular, the waves can modify the oncoming 
profile to form a ‘blocked’ region such as that seen in $3 (an extreme case for which 
the oncoming profile is modified to u = 0 for y < 1). Of course, the same argument 
also applies to the flows without closed streamlines calculated by Long and Miles, 
and hence even those flows do not necessarily correspond to an initially-uniform 
upstream profile. 

A similar problem has been examined experimentally in the analogous stratified- 
flow case by Baines (1977) where the assumption of an undisturbed upstream flow 
profile was also shown to be inappropriate for the same reasons. In that case it was 
likewise shown that, under suitable conditions, internal waves could propagate 
upstream of the obstacle and that these would modify the upstream profile which 
remains once the equilibrium state is reached. This provides some experimental 
verification for the type of process described above, albeit in a different configuration. 

From the above it can be concluded that, except under special initial conditions, 
9 will not be a linear function of $. Despite this, by assuming that the inflow is 
dominated by a uniform flow in the x-direction, some useful information can be 
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FIQURE 6. Numerical solutions for the streamlines calculated using ‘Lot~g’s model ’ for flow past an 
aerofoil in a channel of width W = 20, at several values of K = @/A)% when h % 1 (with contour 
interval A$ = 0.5). 

gained by using (6.3) in an approximate sense. In particular, a number of observed 
features of the flow for a % 1 can be identified, for example solutions to the 
homogeneous form of (6.3) will have wavenumber of magnitude Ikl = (a/h$ and 
wavelength 2n/lkl. Also, the magnitude of the forcing terms on the right-hand side 
of (6.3) indicates that the vorticity cgenerated over the obstacle will be O(a/h). Both 
of these features are apparent in the solutions plotted in figure 6 and in the numerical 
results presented in $10. 

Apart from the calculation of an appropriate .F, another difficulty with the so- 
called ‘Long’s model ’ concerns the appropriate specification of the boundary con- 
ditions on t+k for the elliptic equation (6.2). As noted above, Miles & Huppert as- 
sumed that ‘no stationary waves are present in front of the obstacle ’ for x2 + y2 % 1, 
and chose their Green function solutions of (6.3) accordingly. However, that 
condition is not in a form which is readily applicable to solutions of (6.3) in regions 
for which the appropriate Green function is not available. In  practice it is simpler to 
use a more-general approach which is applicable to numerical calculations, so the 
method chosen in this study was first to solve the non-homogeneous equation (6.3) 
with arbitrarily-specified boundary conditions and then subtract appropriate 
multiples of the complementary functions to eliminate any stationary waves in the 
oncoming profile. Solutions of the nonlinear equation (6.2) could also be calculated 
using a similar process at each step of a Newton iteration. 

Using the method described above, numerical solutions of (6.3) were calculated 
and the stream function plots for these are shown in figure 6 for several values of 
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K = (a/h):. As pointed out in the Appendix of Miles & Huppert (1968), the upper 
boundary has a marked influence on the flow, particularly for smaller values of KW, 
and so the same value W = 20 was used as for the solutions to be presented in $10. 
Based on the theory for L % 1 in Long (1955), it is apparent that u can vanish within 
the flow and that closed streamlines can be present when KW is close to an integer 
multiple of n, due to a ‘resonance’ effect. Figure 6 illustrates the same effects for a 
short obstacle. Resonance for mode 5 occurs a t  K = 0 . 2 5 ~  e 0.785 and for mode 6 at 
K = 0.3m e 0.942. The strongest distortions occur just above resonance (here mode 
5) becoming weaker as the wavenumber increases and remaining small extremely 
close to, but just less than, the next resonance (here mode 6). Whether the 
wavenumber lies above or below a resonant wavenumber appears more important in 
determining the strength of the lee-wavefield for Long’s model than the exact 
distance of the flow from resonance. It is shown in $ 10 that the numerical solutions 
to the complete problem do not display this behaviour and thus it appears that the 
extremes of overturning are a consequence of the assumption of no upstream 
influence. 

The evolution of the flow for long obstacles, with L B 1, near resonance in stratified 
flow has been reduced to the solution of a forced Korteweg-de Vries equation by 
Grimshaw & Smyth (1986), and the necessity of upstream influence demonstrated 
in this case. Similar analysis for the flow on a /3-plane produces the same conclusion 
(R. H. J. Grimshaw & E. R. Johnson, private communication). 

7. The case A 9 1 with a arbitrary 
Despite the large value of h in the parameter regime considered above, the 

influence of Ekman suction does become significant far from the obstacle. A similar 
effect is clear in previous studies of flows past obstacles on anf-plane, for example 
Page (1983, 1987), where the same term leads to a decay of vorticity along 
streamlines over a lengthscale of O(A) from the obstacle. To examine the effect of 
this term, a scaled variable X = z/A can be introduced so that for h B 1 (2.10) 
becomes, to leading order, 

This is equivalent to equation (5.1) introduced on the O(a) lengthscale in $5 and, 
assuming that u is close to unity, solutions of this equation can be sought of the same 
form (5.2), yielding 

In fact, this solution is identical to (5.3) when expressed in terms of x and so, as 
before, F grows exponentially with X when KW > nn and decays exponentially in X 
when KW < nn. Modes with n < KW/K are therefore found only upstream in the 
steady solution and the modes with n > K W / ~  are found only downstream, with both 
sets of modes decaying away from the obstacle. Thus, for fixed K, whether a mode 
appears upstream or downstream is not affected by dissipation (i.e. the value of A).  
When more than one mode is present, either upstream or downstream, the sum of the 
modes is not a solution of the full nonlinear equation (7.1),  but a similar argument 
can still be applied for each mode in a linearized sense far from the obstacle. 
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From (7.2) i t  is apparent that the most slowly decaying component of the 
upstream solution has an e-folding length of (aw2/.rcz -A), so that its extent increases 
as a is increased (for fixed A )  and decreases as h is increased, when a is held fixed. 
Once h > aW/n2, however, no steady waves can exist upstream and (7.2) implies 
that the nth mode on the downstream side of the obstacle decays over a lengthscale 
of (h-aW/n2x2).  This is largest when n is large and gives an e-folding length of h 
in the downstream direction. 

8. The case a < 1 with A arbitrary 
The a = 0, or f-plane, case has been studied extensively in the literature (see, for 

example, Page (1987) for a review of this work). In this section the case of a flow with 
an arbitrary value of h is considered but with a small, so that the effects of the 
bottom slope introduce only a small perturbation upon the f-plane flow. The first step 
in the calculation of this flow is to find the steady solution for a = 0, identified here 
with a zero subscript. From (2.10) this satisfies 

and, using coordinates which follow the streamlines of the flow, it is apparent that 
the vorticity 5, decays exponentially along streamlines, over a lengthscale of O(h) .  
For a uniform flow which enters upstream of the obstacle it then follows that 
C0 = 0 everywhere in the flow domain, and $o satisfies 

v"o = 0. (8.2) 

In terms of the conformally-mapped coordinates (z', y') introduced in $2, the exact 
solution to (8.2) is simply $o = - y' and this can be expressed in terms of x and y by 
evaluating the imaginary part of z' in (2.14). 

Having calculated the solution $, for a = 0, it is possible to calculate the leading- 
order correction for a 4 1 by expanding @ and 5 in powers of a,  in the form 

@ = $0+a$,+a2@2+ ..., 5 = 50+a5,+aZ52+ .... (8.3) 

Substituting these into (2.10), 5, satisfies 

h ( uo-+wo- ;: ;;)=-cl-v0, (8.4) 

and for h = 0 the solution 5, = -a@/,/ax is plotted in figure 7 (a).  The corresponding 
stream function perturbation $, can be found exactly in terms of an integral by 
solving the Poisson equation V2$, = in the 2'-plane (although in this study the 
equation was integrated numerically) to give the streamlines illustrated in figure 
7 (b ) .  One feature of particular interest in perturbation stream function is the pair 
of recirculating cells which act to decrease the speed of the flow close to the obstacle 
on the upstream side, and increase its speed in the corresponding downstream 
position. This could be interpreted as a weak form of the upstream-blocking effect 
described in $3, although in this case it is not due to stationary Rossby waves 
upstream of the obstacle (since K Q 1). 

For non-zero h the perturbation vorticity cannot be evaluated directly from (8.4) 
but some theoretical progress is possible if that equation is written in terms of 
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FIGURE 7. (a) The vorticity perturbation 5, induced when A = 0 and a Q 1 (with A{ = 0.05), ( b )  the 
corresponding perturbation stream function (with Ay?=O.O5), (c) 5, for A = 1, (d )  the 
corresponding 

coordinates which follow the leading-order streamlines $o = constant. Since these 
streamlines are along the lines with y‘ constant here, the equation for gl becomes 

1 0 ,  (8 .5)  
AQ2-2 ac = -5 --2) 

ax/ 
where Q = Idf/dzl is the speed of the leading-order flow. The normal y’ to each 
streamline does not appear explicitly in this equation and so it can be integrated with 
respect to x’ and, assuming that & is (at most) finite far upstream, the solution can 
be written in the form 

For small h this reduces to x -wo, while for larger values of A the integral can be 
interpreted as an average over upstream values of -vo, with an exponential 
weighting towards the values within O(h) of 2’. Thus inertial effects introduce a 
‘delay’ in the response of the vorticity to upstream changes in wo and skew the 
vorticity field in the downstream direction, as shown for A = 1 in figure 7 ( c ) .  This 
leads to a corresponding skewing of the perturbation stream function field $1, as 
shown in figure 7 ( d ) .  

Of some interest is the flow along the streamline $o = 0, which extends around the 
obstacle and follows the line of symmetry y = 0 both upstream and downstream of 
the obstacle. In  front of the obstacle wo is equal to zero on this streamline, and so 

= 0, but once the streamline begins to follow the obstacle surface v0 becomes 
positive and negative values of are generated. For A > 0 these negative values 
persist beyond the point where wo changes sign, and as A increases further the point 
where & becomes positive approaches the trailing edge of the obstacle. In contrast 
to the flow when A = 0, there is no reason in this case why the integral for should 
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FIGURE 8. Numerical solutions for the perturbation vorticity 5, on the surface of the obstacle for 
a Q 1 and various values of A. The distance 8 is measured as in figure 5 except that calculations 
continue beyond the trailing edge and into the wake. 

return to zero at  the trailing edge and so a wake is generated which contains a non- 
zero jump in vorticity across y = 0 (since v,, = 0 in this wake, its strength decays 
exponentially over a lengthscale of O(A) downstream of the obstacle). All of these 
features are apparent in figure 8, where a numerical solution of (8.5), obtained using 
the RungeKutta method in the 2'-plane, has been plotted for several values of A. 
The observed decrease in strength of the vorticity around the obstacle as h is 
increased can be shown directly from (8.6), since cl is of O(l/h) when h 9 1. 

For obstacles with a bluff trailing edge, such as a circular cylinder, there is no 
vorticity discontinuity across and wake and 6, approaches zero in a singular region,, 
containing large vorticity gradients, near the trailing edge. In  particular, solving 
(8.5) along the surface of a circular cylinder implies that cl K where 8 Q 1 is the 
angle measured from the rear stagnation point. This leads to numerical difficulties 
when solving the equations by finite differences, which is a further reason for the 
choice of an aerofoil-shaped obstacle in this study. 

9. Numerical method 
Together, the governing equations (2.10) and (2.13) form a pair of coupled 

nonlinear equations for [and @. Given $, (2.10) is essentially a first-order hyperbolic 
equation for g, the solution of which is determined uniquely by specifying [ as a 
function of time across the upstream boundary. Given 6, (2.13) is a Poisson equation 
for +, and its solution is unique once appropriate boundary conditions for @ have 
been specified on y = 0, the aerofoil, y w Wand both the upstream and downstream 
boundaries. 
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To facilitate a numerical solution, the domain described in $2 was first transformed 
conformally into a simpler rectangular domain using the mapping 2’ = f(z) described 
in (2.14). In this transformed plane, (2.10) and (2.13) can be written as 

and Q 2 V $  = 5, (9.2) 
where, as before, Q = Idf/dxl is the local stretching factor introduced by the 
transformation. The resemblance of these equations to their original form is a further 
advantage of this type of transformation. 

As mentioned in $2) the upper boundary of the computational domain was chosen 
to follow the curve y’ = W ,  rather than y = W ,  and consequently the channel wall 
was slightly wider in the region of the obstacle than at  the upstream and downstream 
boundaries (despite this the channel boundary was generally within 1 % of the line 
y = W).  The upstream and downstream boundaries were likewise chosen to 
correspond to constant values of x’ (rather than x), but since they were generally 
located far from the aerofoil this presented no difficulties. Consequently, the 
computational domain was rectangular in the (x’, y’)-plane and so the boundary 
conditions on both (9.1) and’(9.2) were relatively easy to apply. Furthermore, the 
finite-difference forms of a/ax’ and a/ay’ could be evaluated easily at gridpoints 
located along the lines of constant x’ and y’ with no special treatment necessary near 
the obstacle. 

To evaluate (9.1) and (9.2) numerically, central differences were used for both a/3d 
and a/ay’ except on the boundaries where second-order one-sided differences were 
used. To help resolve features near the aerofoil, the gridlines on which the equations 
were evaluated were spaced unevenly so that there was a concentration of points 
near both x’ = f (L + 1) and y’ = 0. For all of the calculations presented in this paper 
150 points were used in the x’-direction, typically between x‘ = -40 and x‘ = 20, 
with 50 points used in the y’-direction. Also, for most calculations presented here W 
was chosen equal to 20 and L equal to 2. 

The equations were integrated in time using a modified AD1 method, similar to 
that described for the interior flow in Page (1982), which linear stability analysis 
indicates is stable for any choice of timestep. However, in practice the method failed 
to converge for larger values of At, and so typically At = 0.05r/a was used for most 
of the calculations presented in this paper. Integrations of (9.1) and (9.2) were 
iterated at least twice within each timestep and the calculations generally continued 
until the maximum value of 7 a$/at was less than 0.1 ‘YO of the steady @ field. The 
Poisson equation (9.1) was solved using an efficient cyclic-reduction routine a t  each 
iteration (Swarztrauber 1974). 

After the calculations were completed in the .$-plane, the results were transformed 
back into the z-plane using the inverse transformation z = g(z’) of (2.14), defined by 

where u is the same complex-valued variable as used in (2.14) and the branch cut of 
the square root in the 2’-plane extends between - (L+ 1) and (L+ 1) .  

One of the difficulties encountered in the study was the choice of appropriate 
boundary conditions on $ and 6. For a uniform flow far upstream from the obstacle 
the appropriate boundary condition on (2.10) is to require that [+O as x+-m, 



370 M .  A .  Page and E.  R. Johnson 

16 

14 

§? 

12 

10 

U 

8 

6 

4 

2 

0 

07 

2 4 6 8 10 12 14 16 
A 

FIGURE 9. A diagram of (a, A )  parameter space illustrating the broad asymptotic regions examined 
in, $$3-8, along with the cross-sections referred to in $10. The critical values of h above which 
Ea-layer separation may occur is identified by the broken line. 

however, owing to the relatively slow upstream decay in some cases (particularly 
when a is large), a radiation-type boundary condition with 

(9.4) 

is more appropriate, with the bracketed term set to zero when it is positive. This 
condition enables the slowest decaying mode, identified in $7 ,  to proceed out of the 
upstream boundary and, provided it is imposed sufficiently far upstream of the 
obstacle, it should have little effect on the remaining modes (in practice, the 
differences obtained by applying this, rather than 5 = 0, are minimal except close to 
the boundary). The boundary conditions on the Poisson equation present further 
difficulties because they require the specification of @ (or its normal derivative) on 
both the upstream and downstream boundaries. On the upstream boundary an 
equivalent condition to (9.4) was used on the deviations of the stream function from 
the uniform flow, @ + y', while on the downstream boundary it was assumed that the 
flow decayed exponentially towards a uniform flow with a lengthscale of A ,  as 
determined in 0 7. Therefore the condition 

w allr -+A,+@+y'=O at ax (9.5) 

was applied at  a distance large compared with both the length of the obstacle and A,  
although in practice these conditions often produced similar results to those obtained 
with the simpler condition a@/ax' = 0 at the same boundaries. 
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10. Numerical results for a = O( 1)  and h = O( 1)  
For O(1) values of both a and A, the vorticity equation (2.10) is nonlinear with no 

known exact solutions available, and so the features of the flow in this regime can 
only be examined by calculating numerical solutions of (2.10) and (2.13). Despite 
this, the theories outlined for each of the asymptotic cases in $93-8 give a good 
indication of many of the qualitative features of the flows in this regime, and so in 
this section the numerical results will be examined to determine the ways in which 
these features are combined and are modified beyond the regimes in which they are 
strictly valid. Numerical calculations were performed for a number of different cross- 
sections of the two-dimensional parameter space (a, A ) ,  each of which are illustrated 
on figure 9. Also shown Qn figure 9 are the broad regions representing the range of 
parameters for which the asymptotic theories described in $$3-S are applicable, as 
well as the values for which a viscous flow might be expected to separate (see $11).  

The first cross-section, marked A on figure 9, was considered in $ 3  where the flow 
for A = 0 was examined. In particular, the vorticity g for this case is shown in figure 
4 at various values of a, and the presence of both the upstream ‘blocked’ region, of 
length O(a) when a B 1, and the ‘western boundary current’ region, of thickness 
O(l/a) ,  were noted earlier and so will not be discussed further here. 

The second cross-section, marked B, considers the flow for a = 1, and a selection 
of vorticity contour plots calculated on this line at  several values of h are shown in 
figure 10. Although this choice of parameters does not strictly lie within the a < 1 
region considered in $8, several of the features of the flow observed in that 
asymptotic case are evident in these plots. In particular, for h = 1 the vorticity plot 
shows some similarities to that shown in figure 7(c),  the leading term in a series 
expansion for small a, with the c = 0 contour extending from close to the peak of the 
obstacle and separating the upstream region negative vorticity from the positive 
values downstream. Another common feature is the manner in which the magnitude 
of the vorticity decreases away from the obstacle surface, on which the extrema of 
c are attained. As h is increased, the vorticity plots in figure 8 indicate that the g = 0 
line leaves the obstacle from a point further downstream from the peak and, in fact, 
that this point approaches the trailing edge of the obstacle as A -+ a. This feature is 
also clear in figure 10, as is the decreasing rate of decay of vorticity in the wake as 
h is increased (in contrast to the upstream decay of 5 which appears to be much less 
affected by the value of A) .  As a broad summary, it can be concluded that increasing 
A increases the advection in the streamwise direction and tends to reduce vorticity 
differences between parts of the flow along the same streamline. 

However, there are some differences between the trends in figure 10 and the flow 
predicted on the basis of the theory in $8. For example, the vorticity distribution in 
figure 7 becomes skewed downstream with increasing h whereas that in figure 10 is 
skewed upstream for all A. An indication of this is provided by the 5 = 0 contour 
marked on figure 10. In addition, an isolated region of weak negative vorticity is 
present behind the obstacle in figure 10, corresponding to where v becomes positive 
again behind the obstacle, but this feature is not present in figure 7. These differences 
can be ascribed to the absence of Rossby waves (represented by the interaction 
between the -av and the terms in (8.1)) in the perturbation solution and hence the 
lack of any form of upstream effect or lee waves. 

The stream function plots for each of the cases shown in figure 10 show only 
relatively small differences from the potential-flow solution. However, if Q is 
increased to 4 and various values of h are considered then some trends in the plots 



372 M .  A .  Page and E .  R.  Johnson 
r I 

A = 4  s 
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‘or FIQURE 10. Numerical solutions showing the vorticity 5 (with contour interval A5 = O.l/h 
a = 1 and h = 1,2,4 and 8, corresponding to cross-section B on figure 9. In this and most subsequent 
plots, only the - 10 < z Q 10 portion of the computational domain is shown. 

of $ do become apparent. To illustrate these, the vorticity is plotted for cross-section 
C in figure 11 (a)  and the most obviously different feature from figure 10  is the 
oscillatory wake extending downstream a t  an angle of about 45’ to the x-axis (this 
angle is fairly insensitive to A but does increase gradually with a). The corresponding 
feature in the streamline plots in figure 11 (b )  is a waviness in the streamlines, or a 
‘lee-wavetrain ’, rather like those shown in figure 6. Consistent with the asymptotic 
results in $6, the wavelength of these waves increases with A but their strength, as 
represented by the amplitude of the streamline displacements, decreases in inverse 
proportion to A. Also consistent is the lengthscale over which these waves decay 
downstream, demonstrated to be O(h)  when A D 1 in $7. In contrast, the lengthscale 
of the upstream effect has increased in figure 11, in comparison with the same h 
values in figure 10,  but as h is increased for any particular a this lengthscale decreases 
again. This is also in accordance with the predictions in $7. 

For large values of a similar features to those noted above remain, but with the 
wavelength of the lee waves decreasing (for the same value of A )  and the magnitude 
of the corresponding streamline displacements increasing (roughly in proportion to 
a/A for h 2 O( l/a)). However, in addition to these features, two of the characteristics 
of the h = 0 flow, examined in $3, also become more apparent. These are the 
upstream effect, which was seen in $7 to have decay scale (a‘W2/z2-L), so that its 
extent increases as a is increased, and the ‘western boundary current’ which gets 
thinner for larger a. To illustrate these features, a third cross-section (marked D on 
figure 9), was calculated and the numerical results for this are illustrated in figure 12. 
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FIQURE 11. Numerical solutions showing (a) the vorticity 5 (with AC = 0.4/h) and ( b )  the stream 
function $ (with A$ = 0.5) for a = 4 and h = 1,2 ,4  and 8. These values correspond to cross-section 
C on figure 9. 

The upstream blocking effect is discernable in the A = I plot but is most obvious in 
plots of the flow speed (not shown here). Note, in particular, that the condition a > 
A12 for the existence of steady upstream modes is satisfied for between six and 
eighteen wave components in these plots, so that some upstream influence is 
certainly present. Also apparent by comparing figure 11 and figure 12 is that the 
velocities against the downstream side of the obstacle increase with a, for fixed A, and 
the thickness of the western boundary current shrinks in the same limit (in 
accordance with the A = 0 case in $3);  this results in a stronger lee-wavefield at  the 
larger a value. The strengthening of the lee waves can also be explained through the 
approximate conservation of potential vorticity, as represented in (6.3), since the 
forcing to that equation is proportional to alh. 
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FIGURE 12. Numerical solutions showing (a )  the vorticity 5 (with A5 = 0.8/A) and ( b )  the stream 
function z,h (with A$ = 0.5) for a = 8 and A = 1 ,2 ,4  and 8. These values correspond to cross-section 
D on figure 9. 

Of particular interest is the case when the wavelength of the lee waves is of the 
same magnitude as the thickness of the western boundary current at  large values of 
a. This regime corresponds to that examined both in Foster (1985) and in $4, and the 
region of most interest is against the downstream surface of the obstacle. As a result 
several streamline plots for the cross-section E are shown in figure 13, restricted to 
the region 0 < x < 4, at four different values of h = ha (note that a finer grid spacing 
was used near y' = 0 for these calculations). These streamlines represent the solutions 
of the full equations (2.10) and (2.13) and it is clear that, although there are thin 
regions of high shear, there is no short-scale region in which the flow must turn by 
180°, as would be expected for a cylindrical obstacle from the analysis of Foster 
(1985). Of particular note is the thin jet-like flow which leaves the surface of the 
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FIGURE 13. Numerical solutions showing the stream function $ for a = 16 and h = 1 ,  2, 4 and 8, 
plotted over the range 0 < x < 4 and using the contour interval A$ = 0.1. These values correspond 
to cross-section E on figure 9. 

obstacle at the trailing edge, with the streamlines then returning to their appropriate 
y-level after travelling a relatively short distance in the wake. This retention of fluid 
a t  the end of the ‘western boundary current ’ for larger values of x is a feature of the 
asymptotic theory in $4, but no detailed theory of the trailing-edge region is 
proposed here. Preliminary calculations with a circular cylindrical obstacle show 
highly singular behaviour a t  the rear stagnation point in this regime, in contrast to 
the smooth behaviour as the flow leaves the rear of the aerofoil, and this is consistent 
with the behaviour of a western boundary current near a corner (Page & Johnson 

The final cross-section shown on figure 9, marked F ,  is of particular relevance to 
the asymptotic theory described in $6, for which the ‘potential vorticity’ 9 = 
(hc+ay) is conserved along streamlines. For this cross-section h is kept equal to a, 
and several values of a are considered for the results shown on figure 14. The largest 
value of h used is 16, giving a decay scale roughly equal to the width of the 
computational region shown, yet the lee waves have considerably smaller amplitudes 
and the vorticity is much weaker than in the corresponding Long’s model plot for 
K = 1 (also shown). While both dissipative and upstream effects are absent from the 
Long’s model calculations, the results in figure 14 seem to indicate that the major 
differences are due to the latter effect. As a further illustration of this, plots of the 
stream function are shown in figure 15 at three values of K ,  based on both the 
numerical results for h = 16 and the Long’s model calculation. The numerical results 
vary smoothly and almost imperceptibly, showing a slight increase in lee-wave 
strength with increasing K, consistent with the asymptotic result that the maximum 
vorticity is proportional to K ~ .  In Long’s model mode 6 is resonant for K = 0 . 3 0 ~  w 
0.942 and mode 7 for K = 0.3571 x 1.10. The pattern for K = 0.95 lies just above a 
resonance and so has a highly distorted lee-wavefield entirely absent from the 
numerical results. The patterns further above resonance have lee-wavefields weaker 
than the almost-resonant field but still stronger than the lee-waves in the numerical 
results and more slowly decaying away from the obstacle. This strongly supports the 

1990). 
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FIQURE 14. Numerical solutions showing (a) the vorticity 5 (with A< = 0.1) and ( b )  the stream 
function $ (with A$ = 0.5) for h = a and a = 4, 8 and 16, along with a Long’s model solution for 
K = 1. These values correspond to cross-section F on figure 9. 
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hypothesis that upstream-influence is present in the numerical results. Furthermore, 
the numerical results during the evolution of the flow show finite-amplitude waves 
originating in the neighbourhood of the obstacle and propagating upstream and i t  
appears that these waves are able to alter the velocity profile on the approach to the 
obstacle in such a way as to prevent the closed-streamline regions which would 
otherwise be present when KW is close to an integer multiple of z. The absence of such 
regions in the numerical results in figure 15 is unlikely to be solely due to the effect 
of the Ekman suction term in (2.10) since that dissipation is weak over lengthscales 
of the order of the obstacle width when h is large. 

1 1. E+-layer separation 
The parameter regime studied in this paper is such that no effects due to horizontal 

viscous diffusion are included in the leading-order flow. However, as for non-rotating 
fluid flow at a high Reynolds number, these effects will always be important in thin 
boundary-layer regions adjacent to no-slip surfaces. For f-plane flows the effects of 
these regions, known as Ei layers, have been studied widely and many of the 
conclusions reached in those studies (see, for example, Page (1987) for a review) can 
be immediately extended to the P-plane flow considered here; this is because the 
governing equations for the layers are, to leading-order, identical for both flows, with 
the only dependence on a being through the imposed velocity at  the outer edge of the 
layer. 

Provided these layers remain thin and attached to the obstacle surface, without 
separating in the manner shown in Page (1987, 1988), the effect of these layers on the 
overall flow features can be neglected and the numerical results presented in this 
paper accurately describe the flow patterns expected in the corresponding 
experiments. For small values of h this will almost always be true and the flow 
features described in $3 will be unaffected by the Ea layers. However, as seen in Page 
(1982, 1987), once h exceeds a certain finite critical value A,, which depends on a, it 
can be shown that the Ei layers can separate from the obstacle, and the separated 
shear layers enclose an independent region of flow, bounded by a single value of 9. 
Once this has occurred the effective obstacle shape can be extended to include the 
separated flow region and, as pointed out in 9 1,  the resulting shape for many forms 
of bluff bodies is then very similar to that of a Joukowski aerofoil. Therefore, the 
qualitative features of a viscous flow past a bluff obstacle can be expected to be 
similar to those examined for the inviscid flow past an aerofoil in this paper, although 
the effective length of the aerofoil would increase with A for the viscous flow, as the 
length of the separation bubble expands. 

Notwithstanding the above, it is interesting to examine whether the viscous flows 
corresponding to those calculated in this paper will contain separated Ei layers. To 
this end, the necessary condition for separation to occur, used in Page (1982), was 
examined to determine the range of values of a and h for which it is satisfied. This 
requires that the tangential velocity u,, against the obstacle satisfies the condition 

h - < - 1  duo 
ds 

(11.1) 

at some streamwise distance 5 along the surface, and for each value of a this identifies 
a lower bound on the value of h fQr which separation can occur. The resulting curve 
has been plotted on figure 9 and is identified by a broken line. Of particular interest 
is the apparent suppression of separation for small values of a. For larger values of 
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a this trend reverses and the curve appears to be approaching the h = 0 axis, 
consistent with the analysis in $4, for a b 1 and h = O(l /a ) ,  which suggests that the 
critical value of h is probably proportional to l/a in this region, up until the point 
when a is of order E-i. 

layers is the relevance to this 
paper of the results of Merkine (1980), Matsuura (1986) and Matsuura & Yamagata 
(1986), all of which indicate that separation is ‘delayed’ as the /3-effect (i.e. a) is 
increased. In each of those cases the authors are referring more to the position of the 
separation point on the obstacle than to whether separation occurs at all (some are 
effectively considering the case h = 03 for which separation must occur). It is 
important to distinguish between these two separate meanings of ‘delayed 
separation ’, particularly when examining the results of $5 of Foster (1985) for which, 
incidentally, separation will be expected very close to the rear stagnation point once 

layers have separated from the obstacle are likely to 
become unsteady for sufficiently small values of E ,  owing to shear-layer instability, 
and the resulting motion is asymmetric, in the form of a KBrmBn vortex street. The 
development of this instability in the context of a driven flow within a cylindrical 
container has been examined by Becker & Page (1990), where it was found that the 
separated flow does remain steady over a wide range of parameters. 

Another point concerning the separation of the 

x > a. 
Finally, flows in which 

12. Conclusions 
The aim of this study was to examine the phenomenon of upstream influence in a 

simple, but realistic, situation for which a number of disjoint theoretical results are 
available, and to combine these with both some new theory and the results of 
numerical calculations. By doing this a more complete picture of an important 
geophysical flow has been established, revealing properties which can be generalized 
both to other /3-plane flows and to other configurations displaying upstream- 
influence effects. Much of this has been achieved through the simplifying effect 
introduced by the linear friction term (due to Ekman suction in this case), which 
reduces the influence of the choice of boundary conditions on both the analytical and 
numerical results. The parameter range studied is that which is also appropriate to 
the laboratory experiments of Boyer & Davies (1982). 

The main conclusion of this work is that most of the flow features identified in each 
of the asymptotic regimes are present, st least in a modified form, in the flow for 0(1 )  
values of a and A. Of particular note are the downstream ‘lee-wavetrain’ and the 
upstream ‘blocked’ region; in the former case similar features were observed in 
previous studies using Long’s model, for example Miles & Huppert (1968), although 
the neglect of the upstream-influence effect does appear to overemphasize the 
amplitude of the steady lee-wavefield in some cases. With regard to the upstream 
influence, which is introduced (for a finite-width channel) once the ratio a/h exceeds 
a critical value, it has been confirmed that the steady upstream waves can have a 
significant effect on the overall flow field, particularly near resonance, and that for 
sufficiently large values of a/h the different wavelength components can combine to 
form a region of retarded, or ‘blocked’, flow ahead of the obstacle. The flow 
considered by Foster (1985) is an extreme case of this general effect. Despite this, the 
conservation of potential vorticity does yield an order of magnitude estimate for the 
strength of the lee waves for h 2 O ( l / a ) .  The separation between those stationary 
modes which appear upstream of the obstacle and those which appear downstream 
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can be determined through a group velocity argument and this is unaffected by the 
presence of Ekman dissipation. In fact, this dissipation simply acts to confine the 
downstream waves within an O(h)  distance of the obstacle, and introduces a 
maximum upstream decay scale of (aW"/nz-h) when that quantity is positive (and 
L otherwise). 

Another important feature, present for large values of a, is the intensification of 
the flow velocities on the downstream surface of the obstacle, the 'western boundary 
current '. Numerical calculations suggest that this layer extends into the wake 
behind the obstacle as inertial effects increase, eventually becoming less noticeable 
as the layer becomes dominated by nonlinear effects and the lee-wave pattern forms 
in the wake. 

The numerical calculations presented in this study have been obtained by 
integrating the problem from an initially irrotational state towards a steady state, 
ensured through the frictional effects of Ekman suction. In  a wave-adjustment 
problem of this kind it is not immediately clear that flow field in the final steady state 
is not dependent upon the particular initial conditions chosen. As a result, it is quite 
probable that Long's model (which requires a uniform upstream profile) does yield, 
in the absence of dissipation, the appropriate solution for the steady state of a 
particular problem where the upstream waves in the initial condition are exactly 
annihilated by the upstream-travelling Rossby waves which lead to the eventual 
steady state. This has not, however, been pursued here. More generally, there does 
not appear to be any clear correspondence between the initial upstream profile and 
that which remains once the steady state is attained, so the appropriate function P 
for any problem can probably be found only by solving the complete unsteady 
problem. 

In this study the obstacle is considered to have the form of a Joukowski aerofoil, 
whereas Foster (1985), Matsuura & Yamagata (1986), Miles & Huppert (1968) (in the 
context of Long's model) and Boyer & Davies (1982) used a circular cylinder. 
Comparison of both the lee-wave patterns for Long's model solutions and the results 
of the numerical integrations for different shaped obstacles show that the qualitative 
features of the flow field are not greatly affected by the choice of obstacle. The most 
significant difference is in the flow near the trailing edge, particularly in the regimes 
considered in $4 and $S, where the boundary layers against the body are forced to 
turn abruptly near the rear stagnation point. This point is pursued in Page & 
Johnson (1990). 

One parameter not examined in this study is the effect of the length L of the 
obstacle on the flow field. Numerical trails with several values of L indicate that there 
are no significant qualitative differences in the flow features for each of these and 
most of the theory outlined in this paper is independent of the value of L, while that 
value is of O(1). The only noticeable difference is likely to be in the wavenumber 
distribution of the amplitudes of the various wave components in the steady flow. 
For L B 1 the theory in McIntyre (1972), for thin obstacles, can be applied and this 
suggests that upstream influence becomes less important as L increases, being 
O( 1/L2) compared to the uniform flow. Furthermore, the critical value for upstream 
wave-components increases to K > 2n/W in that case, since only even values of n, 
forced by wave-interactions in the lee-wavefield, are found upstream. For long 
obstacles it can also be expected that some simplifications of the theory are possible 
since the Laplacian in (6.3) can be replaced by a2/ay2, and it is likely that the results 
in Baines & Guest (1988) for a continuously-stratified flow could be extended, at least 
partially, to this flow. 
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Another effect not considered extensively is that due to the finite width 2 W of the 
channel, both through its effect on the allowable wavenumbers 1 in the steady 
upstream flow and on the introduction of reflected waves into the flow domain. The 
latter effect was minimized for the values of h used in this study by choosing a 
sufficiently large value of W. For a infinite value of W the most significant theoretical 
differences are that there is no minimum value of u / h  for which steady upstream 
waves exist and that there is a continuous (rather than discrete) range of allowable 
wavenumbers 1 for which these waves exist a t  any fixed value of ulh. Since the 
upstream dissipation scale introduced in $7 is infinite in this limit, it can be expected 
that the upstream waves decay algebraically (as in, for example, Yamagata 1976), 
and McIntyre (1972) concludes that upstream disturbances for the internal-gravity- 
wave case decay algebraically in time. However, it  is not expected that these 
differences would have a significant qualitative effect on the flow fields examined in 
this paper for most parameter regimes. 
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